If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x+2x^2=12
We move all terms to the left:
4x+2x^2-(12)=0
a = 2; b = 4; c = -12;
Δ = b2-4ac
Δ = 42-4·2·(-12)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{7}}{2*2}=\frac{-4-4\sqrt{7}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{7}}{2*2}=\frac{-4+4\sqrt{7}}{4} $
| 20+2x=3x+7 | | 0+12x=9x-10 | | 0+12x=9x–10 | | 5y-8=8y | | y+16=-9+6y | | 4y-7y-6=0 | | 4y+4y-6=0 | | w²-12w=+36 | | 7+3x+5x=-38 | | (-4)×x=(-76) | | -5(1+x)-3x=2(x+1)+2 | | 35-x^+3x^=36 | | 3x+1=15-x | | -6m-6=18 | | w²-12w=36 | | 5a-2=3(a+2)-5 | | 4(q+3)=2(5q+3) | | s^-25=-26 | | X^+6x-456=0 | | 6-5x^2=2 | | 7k=12-5k | | 15(x-4)-2(x-9)+3(x+6)=0 | | 34-(p-1)=-4 | | m2–5=20 | | 7x-42+5x=180 | | 5(x+5)=40. | | -9x-5=9x+2 | | -4+3x=3(x-1) | | x,8+2x=20 | | 250–5x=20 | | q²-24q=3 | | 2{3x-4}+x-1=-16 |